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Abstract
Although quasi-two-dimensional organic superconductors such as κ-(BEDT-
TTF)2Cu(NCS)2 (BEDT-TTF ≡ bis(ethylene-dithio)tetrathiafulvalene) seem
to be very clean systems, with apparent quasiparticle mean free paths of
several thousand ångströms, the superconducting transition is intrinsically
broad (e.g. ∼1 K wide for Tc ≈ 10 K). We propose that this is due to the extreme
anisotropy of these materials, which greatly exacerbates the statistical effects
of spatial variations in the potential experienced by the quasiparticles. Using
a statistical model, we are able to account for the experimental observations.
A parameter x̄, which characterizes the spatial potential variations, may be
derived from Shubnikov–de Haas oscillation experiments. Using this value,
we are able to predict a transition width which is in good agreement with that
observed in megahertz penetration-depth measurements on the same sample.

The large number of Shubnikov–de Haas and de Haas–van Alphen oscillation experiments
which have been carried out on crystalline organic superconductors demonstrate the high
quality of these materials [1]; oscillations are resolved down to ∼2 T [2], and apparent scatt-
ering times extracted by Dingle analysis [1, 3] are well in excess of a picosecond, suggesting
intralayer mean free paths �1000 Å [4]. Support for the cleanliness of the organics also
comes from magneto-optical measurements of cyclotron and Fermi-surface-traversal reson-
ances, which again yield apparent scattering times �1 ps [4, 5].

In spite of this, the superconducting transition at the critical temperature Tc seems to
be rather broad, whatever the measurement method used. Resistivity measurements are the
most prone to complications [6, 7], especially in an applied magnetic field. However, even
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when reliable perturbative techniques such as thermal conductivity [6] or GHz and MHz
penetration-depth experiments [6, 8, 9] are employed in zero field, the transition has a signif-
icant width �Tc. Figure 1 shows a typical example; a κ-(BEDT-TTF)2Cu(NCS)2 sample was
placed in a coil forming part of a tank circuit oscillating at around 38 MHz (see reference [9]).
The superconducting-to-normal transition is observed because the change from skin depth to
penetration depth limited coupling of the sample to the MHz fields [8, 9], which results in a
shift in the resonant frequency f of the tank circuit. For the purpose of making quantitative
comparisons below, we choose two methods for defining the temperature (T ) width of the
transition. Firstly, by fitting the differential df/dT of the data to a Gaussian centred on
T Gauss

c = 9.38 K (figure 1, inset), a full width of �T Gauss
c ≈ 0.7 K is obtained. Alternatively,

�Tc may be defined using straight-line extrapolations (see figure 1), to give �T linear
c ≈ 0.9 K.

Note that both methods yield�Tc/Tc ∼ 0.1; it is likely that this significant intrinsic broadening
of the transition region is responsible for the wide range of Tc-values quoted for κ-(BEDT-
TTF)2Cu(NCS)2 [1, 7].
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Figure 1. MHz penetration data for a single crystal of κ-(BEDT-TTF)2Cu(NCS)2, shown as
resonant frequency f versus temperature T . The superconducting transition is the steeply sloping
region between the more gentle variations characteristic of superconductivity (low T ) and the
normal state (high T ); note that the complete transition region occupies a temperature range from
around 8 K to 11 K. The dotted lines are extrapolations of the normal-state, transition-region and
superconducting-state behaviours. The intersections of the extrapolations occur at 8.9 T and 9.8 T,
giving T linear

c ≈ 9.35 K (mid-point) and �T linear
c ≈ 0.9 K. The inset shows the differential df/dT

of the data (points) fitted to a Gaussian (curve) centred on T Gauss
c = 9.38 K, with a full width of

�T Gauss
c ≈ 0.7 K.

In this letter, we show how a superconducting transition can be broadened due to charged
impurities (or vacancies) randomly dispersed throughout a crystal, even when the potential
associated with the impurity (or vacancies) is of extremely short range. When averaged over the
coherence volume �v = πξ0xξ0yξ0z/6, where the ξ are Pippard coherence lengths5, statistical
variations in the density of impurities (or vacancies) lead to a spatially varying order parameter
�0 and consequently a Gaussian-broadened transition. The effects of these statistical variations
are shown to become more pronounced when the dimensionality of the superconductor is

5 As the following paragraph will show, we are dealing with a situation in which mean-field theory breaks down
because of spatial variations of the order parameter. It is therefore inappropriate to use the Ginzburg–Landau
temperature-dependent coherence lengths to parametrize the coherence volume, as these diverge at Tc.
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reduced, as is the case in quasi-two-dimensional crystalline organic superconductors such as
κ-(BEDT-TTF)2Cu(NCS)2.

Our treatment is closely related to the Ginzburg criterion [10, 11], a quantitative guide
to the circumstances under which mean-field theory can be expected to break down due
to fluctuations6. The Ginzburg criterion has in the past been invoked to explain the broad
superconducting transitions in the ‘high-Tc’ cuprates [12]. However, in contrast to the situation
in the cuprates, details of the band-structures of the organic superconductors are often known
to great precision [1], whereas the interpretation of heat capacity data (necessary to derive the
Ginzburg criterion) in the latter systems is still somewhat contentious [7]. We have therefore
used an alternative statistical method to treat the spatial variations of the potential, based on
a good quantitative knowledge of g(EF), the density of quasiparticle states close to the Fermi
energy EF.

The introduction of impurities in an ideal metal leads to potential variations (of typical
length scale R) and a finite scattering rate τ−1 for normal quasiparticles [1, 13]. By contrast,
the spatial extent ξ0 of the superconducting wavefunction often greatly exceeds R, with the
result that theoretical studies fail to yield a direct correlation between τ−1 and the order
parameter �0 [15]7. Nevertheless, nonmagnetic impurities can have an effect because the
superconducting state is sensitive to changes in g(EF). As an example of this, let us consider
the weak-coupling BCS formula

�0 ≈ h̄ω0 exp

[
− 1

g(EF)V

]
(1)

where V is an interaction strength [15]. If a small (local) fraction x of the host atoms or
molecules are replaced by impurities, then the variation of g(EF, x) can be written as [13]

g(EF, x) = g(EF) + g′(EF)x. (2)

If we assume that each impurity introduces one extra charge (−e), the derivative g′(EF) =
dg(EF, x)/dx can be obtained from band-structure calculations in the limit x → 0.

The number of sites available for impurity substitution within �v is n = �v/uv, where uv

is the formula-unit volume. However, the local number of impurities within such a volume,
m = xn, will be subject to statistical variations via the binomial distribution (BD) [13]:

p(m, n) = x̄[1 − x̄]n−mn!

m![n − m]!
(3)

where x̄ is the mean of x. Below we consider relatively large values of n (43 � n � 1010);
the skewness factor

η = 1/
√

6x̄[1 − x̄]n

vanishes for large n, and the BD is well approximated by the normal distribution [13]. Hence,
the mean value of m becomes nx̄ while its standard deviation is

σ(m) =
√
nx̄[1 − x̄].

For a ‘clean’ metal, x̄ 	 1, leading to a standard deviation in x of

σ(x) ≈
√
x̄/n. (4)

Using the fact that the standard deviation of a function of x̄ is equal to the derivative of
that function multiplied by the standard deviation of x̄, we insert equations (2) and (4) into
equation (1), yielding the standard deviation σ(�0) of �0:

σ(�0)

�0
≈ g′(EF)

g(EF)2V

√
x̄uv

�v
. (5)

6 A useful introduction to the Ginzburg criterion is given in section 5.1 of reference [11].
7 Except in the case of magnetic impurities [15].
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Applying the relation 2� = αkBTc, where α ≈ 3.52 in the weak-coupling BCS (Bardeen–
Cooper–Schrieffer) limit [15], the broadening of the superconducting transition is

�Tc

Tc
≡ 2

σ(Tc)

Tc
≈ 2

σ(�0)

�0
. (6)

We now demonstrate the sensitivity of �Tc to the dimensionality of the superconductor.
Conventional three-dimensional (3D) superconductors have coherence lengths of approx-

imately 102–104 Å and uv ∼ 20 Å3 [14], yielding 104 � n � 1010. For reasonably pure
metals, we expect 10−4 � x̄ � 10−2, while g(EF)V ∼ 0.3; finally we use the fact that
g′(EF)/g(EF) = 1

3 for a free-electron model [14]. These figures yield transition widths
10−3 � �Tc/Tc � 10−7, in reasonable agreement with observations [15]. These sharp
transitions are a consequence of the large size of the superconducting wavefunction, allowing
inhomogeneities to be averaged out.

In quasi-two-dimensional (Q2D) organic superconductors, the intralayer coherence
lengths are ∼102 Å. However, the interlayer coherence length ξ0z can be much less than
the layer spacing a [7]; in κ-(BEDT-TTF)2Cu(NCS)4, ξ0z can be estimated8 to be ∼0.3 Å,
whereas a ≈ 16 Å [18]. The consequence of this extreme anisotropy is that �v is replaced by
a ‘coherence area’�a = πξ0xξ0y/4, because superconducting wavefunctions do not extend out
of the layers. In enumerating n, the unit cell must also be represented by an area ua (≈106 Å2

in κ-(BEDT-TTF)2Cu(NCS)4 [18]). Assuming BCS values for the intralayer coherence lengths
(ξ0x ≈ ξ0y ≈ 76 Å) [18], we obtain n ≈ 43, much less than typical values of n in 3D systems.

In the current context, κ-(BEDT-TTF)2Cu(NCS)2 has the considerable advantage that
its intralayer band-structure may be represented to good accuracy by the effective dimer
model [4, 19, 20]:

E(k) = ±2 cos

(
kbb

2

)√
t2
c1 + t2

c2 + 2tc1tc2 cos(kcc) + 2tb cos(kbb). (7)

Here kb and kc are the intralayer components of k and tb, tc1 and tc2 are interdimer transfer
integrals [19, 20]; the + and − signs result in the quasi-one-dimensional (Q1D) sheets and
Q2D pocket of the Fermi surface respectively [1]. Moreover, the Fermi-surface warping in the
interlayer direction is rather small [4], so it may be ignored for the current purposes. Accurate
de Haas–van Alphen and magnetic breakdown data constrain the parameters in equation (7)
rather tightly, leading to the values tb = 15.6 meV, tc1 = 24.2 meV and tc2 = 20.3 meV [4].

Figure 2 shows Ns, the areal quasiparticle density per layer, as a function of quasiparticle
energyE for κ-(BEDT-TTF)2Cu(NCS)2; the curve has been derived using the parameters listed
in the previous paragraph and equation (7). The position of the Fermi energy and the value
of Ns corresponding to the well-known magnetic breakdown β-frequency [1], which encom-
passes the entire Fermi surface, are indicated by dotted lines. Whereas for many purposes [4]
the bands of κ-(BEDT-TTF)2Cu(NCS)2 are rather parabolic close to EF, some curvature of Ns

versus E is visible in figure 2, resulting in a g(EF) which varies with energy (figure 2, inset).
Using the results shown in figure 2, we obtain g′(EF)/g(EF) ≈ 1.45.

Whilst it is unlikely that κ-(BEDT-TTF)2Cu(NCS)2 is a weak-coupling BCS super-
conductor [1, 8, 20–22], equation (1) is known to describe the functional dependence of Tc

on g(EF) very well, as shown in the pressure-dependent experiments of Caulfield et al [19].
Using g(EF)V ≈ 0.3 [19] and 10−4 � x̄ � 10−2 we obtain 0.015 � �Tc/Tc � 0.15,
encompassing all known experimental data.

In order to find a suitable value of x̄ for the sample used in figure 1, we turn to reference [13],
which shows that spatial variations in the potential experienced by the quasiparticles leads to

8 The anisotropy is ∼100–350 [8, 16, 17], and the in-plane coherence lengths are estimated to be ≈76 Å [7, 18].
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Figure 2. Ns, the areal quasiparticle density per layer, as a function of quasiparticle energy E for
κ-(BEDT-TTF)2Cu(NCS)2; the curve has been derived using the parameters listed in the text and
equation (7). The position of the Fermi energy and the value ofNs corresponding to the well-known
magnetic breakdown β-frequency [1] are indicated by dotted lines. The inset shows the variation
of the quasiparticle density of states g(E), normalized to its value at E = EF, as a function of the
quasiparticle energy.

broadening of Landau levels and hence damping of Shubnikov–de Haas and de Haas–van
Alphen oscillations. This damping is parametrized by an effective Dingle temperature

TD = x̄[1 − x̄]F ′(x̄)2a

πkBm∗

√
h̄e3

2F
. (8)

In the current context, F is the quantum oscillation frequency of the breakdown β-orbit and
F ′ = dF/dx; it is simple to show that F ′ ≡ F ≈ 3920 T [1]. The sample used in figure 1
had TDα ≈ 0.42 K [4] for the α-orbit Shubnikov–de Haas oscillations, which translates into
a Dingle temperature of TD ≈ 0.76 K for the magnetic breakdown β-orbit [1]. Substituting
this value of TD into equation (8) yields x̄ ≈ 0.0017, which can be used in equation (6) to
give �Tc ≈ 0.6 K. This value is in good agreement with �T Gauss

c ≈ 0.7 K extracted from the
MHz experiments (see figure 1, inset) and close to the value �T linear

c ≈ 0.9 K found using the
alternative linear extrapolation method.

One possible interpretation of the value of x̄ ≈ 0.0017 is that ∼0.1–0.2% of the
molecular sites in our crystals of κ-(BEDT-TTF)2Cu(NCS)2 are in some way defective,
functioning as ‘impurities’ or ‘vacancies’; possible mechanisms might include neutral BEDT-
TTF molecules, anions which are missing or in which the Cu ion possesses the wrong charge,
or the incorporation of other molecular species from the growth process. The detection of
such defects by other means is very difficult; all that can be noted at present is that such
concentrations of defects are thought to be not unlikely [23].

In summary, using a statistical model, we are able to account for the broadened super-
conducting-to-normal transitions observed in organic superconductors. Our model consistently
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explains the superconducting transition width and the Landau-level broadening in κ-(BEDT-
TTF)2Cu(NCS)4 using one parameter, x̄. Given the precise knowledge of the Fermi-surface
topologies of many organic superconductors, and the availability of many samples of differing
quality and effective dimensionality [9], our model may be useful in obtaining a more detailed
understanding of the factors which influence the formation of the superconducting state.
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